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Characterization of Bernstein modes in quantum dots
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Abstract. The dipole modes of non-parabolic quantum dots are studied by means of their current and
density patterns as well as with their local absorption distribution. The anticrossing of the so-called
Bernstein modes originates from the coupling with electron-hole excitations of the two Landau bands
which are occupied at the corresponding magnetic fields. Non-quadratic terms in the potential cause an
energy separation between bulk and edge current modes in the anticrossing region. On a local scale the
fragmented peaks absorb energy in complementary spatial regions which evolve with the magnetic field.

PACS. 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic
and nanoscale systems – 73.20.Mf Collective excitations (including excitons, polarons, plasmons and other
charge-density excitations)

1 Introduction

The far infrared (FIR) spectroscopy has proved to be an
invaluable tool for the physical characterization of semi-
conductor quantum dots and other electronic nanostruc-
tures [1,2]. Since its initial applications to 2D semiconduc-
tor quantum dots one of the main motivations has been
to identify a signal of the relative motion of the confined
electrons. As is well known [3], most commonly the con-
finement seems to be parabolic, and in this limit the gen-
eralized Kohn theorem assures that the only allowed ex-
citations are the center-of-mass modes, at the frequencies

ω±(B) =

√
ω2

0 +
ω2
c

4
± ωc

2
, (1)

where B is the applied perpendicular magnetic field,
ω0 is the frequency associated with the external parabola
and ωc = eB/c is the cyclotron frequency [4].

In reference [5] the fragmentation of the high-energy
branch ω+(B) was measured in wires and dots and inter-
preted as an interaction with the cyclotron harmonics at
energies nωc (n = 2, 3). Since these interactions resem-
ble the Bernstein modes of the electron gas [6], the same
name was used to label the corresponding excitations in
these nanostructures. More recently, Krahne et al. [7] have
measured the Bernstein modes in a 2D GaAs system with
tunable electron density, varying from a continuous 2D
gas to well separated dots. While the anticrossing exactly
occurs at 2ωc for the 2D gas, for finite quantum dots it
lies below (between ωc and 2ωc).

It is our aim in this paper to provide a physical charac-
terization of the below-2ωc Bernstein modes of quantum
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dots by analysing the current and density distributions,
as well as the local absorption patterns, associated with
each particular peak of the dipole spectrum. For this pur-
pose, we shall use the time-dependent local-spin-density
approximation in a symmetry unrestricted formalism as
developed recently in reference [8]. A comparison with the
electron-hole interband transitions will also shed light on
the origin of the fragmentation of the ω+(B) branch.

2 Theoretical approach

As in reference [5] we assume the following confining po-
tential

vconf(r) =
1
2
ω0

[(
r

`0

)2

+ a

(
r

`0

)4
]
, (2)

with r the radial coordinate in the xy plane, where the
electronic motion occurs, `0 = ω

−1/2
0 the confining length,

ω0 = 3.37 meV and a = 2.02×10−2. The parameter a con-
trols the degree of non-parabolicity although, as shown in
reference [5], the Bernstein fragmentation discussed be-
low is actually not much sensitive on its precise value. It
is worth to mention that a similar potential including a
quartic term was used by Ye and Zaremba to analyze the
breaking of Kohn’s theorem in the context of a hydrody-
namic approach [9].

We assume the effective-mass Hamiltonian, applicable
to GaAs nanostructures [10], and describe the electronic
exchange and correlation effects within the Local-Spin-
Density approximation (LSDA). This density-functional
approach has recently been used by several authors to de-
scribe quantum dot properties. The reader is addressed to
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Fig. 1. Evolution of the dipole strength for the 20-electron dot. The dashed line indicates ω = 2ωc and the dotted one the
∆` = +1 electron-hole interband transitions. The labels identify the different peaks discussed in the text.

references [11–13] for details on the method. In the con-
text of the FIR absorption the time-dependent extension
(TDLSDA) has also been shown to provide adequate re-
sults [14,15].

The dynamical properties described below have been
calculated by integrating the Kohn-Sham equations

i
∂ϕiη(r, t)

∂t
= hη[ρ,m] ϕiη(r, t) , (3)

where η =↑, ↓ labels the two spin components, while
ρ =

∑
occ. |ϕi↑|2 + |ϕi↓|2 indicates the total particle den-

sity and m =
∑

occ. |ϕi↑|2 − |ϕi↓|2 the total spin magne-
tization. The self-consistent Hamiltonian in equation (3)
reads
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with A(r) = B/2(−y, x) being the vector potential in
the symmetric gauge, EXC [ρ,m] the exchange-correlation
functional, and sη = ±1 for η =↑, ↓, respectively. The
Zeeman term in equation (4) contains the gyromagnetic
factor g∗ and the Bohr magneton µB = e/2mec.

3 Single peak analysis

After calculating the ground state structure and in order
to excite the collective dipole mode we perform a small
rigid translation of the electronic cloud. This takes the
system out of equilibrium and as a consequence it be-
gins to oscillate. The expectation values of several observ-
ables O are subsequently recorded in time 〈O〉(t) and fre-

quency analysed to obtain the corresponding energy dis-
tributions. In the present analysis we have considered the
dipole, local current and local density operators, i.e.,

D̂ =
∑
i
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ĵ(r) =
∑
i

[
− i

2

(→
∇i −

←
∇i
)

+
e

c
A(ri)

]
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ρ̂(r) =
∑
i

δ(r− ri) . (5)

Note that after the frequency analysis we obtain 〈O〉(ω)
which for the local signals provides a pattern of currents
〈̂j(r)〉(ω) and of local density 〈ρ̂(r)〉(ω) that can obviously
be ascribed to the excitation at energy ω. At a fixed ω,
the time evolution at every point r is simply given by
a phase e−iωt, or by sin(ωt) and cos(ωt) for the corre-
sponding real transforms, thus permitting to monitor the
variation of the current and density patterns for each exci-
tation peak. In addition, the density patterns can be used
to obtain the local absorption from | 〈ρ̂(r)〉(ω) |, as done in
reference [16] for the characterization of the FIR absorp-
tion of triangular and square quantum dots. Theoretically,
the local absorption at R provides the energy absorbed
by the system when a probe of the type ξ(r−R) is used,
where ξ is a highly peaked spatial modulation [17]. Note
also that in equation (5) we have used the gauge invariant
current including explicitly the vector potential A(r).

4 Results

Figure 1 displays the FIR absorption for a dot with
N = 20 electrons in the confining potential (2) for dif-
ferent vertical magnetic fields. The Bernstein fragmen-
tation of the high energy branch is conspicuous for
1.6 T < B < 2.4 T. Actually, for several B’s up to three
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Fig. 2. Left panel displays the Kohn-Sham single particle
energies as a function of angular momentum at a magnetic
field B = 1.8 T. The dashed line separates occupied and non-
occupied levels. Right panels show the response using the per-
turbative approach [18]. The dashed lines correspond to the
restricted subspaces for hole states in Landau bands A and B,
respectively.

peaks can be identified in the higher branch, although in
most instances this branch fragments into two dominant
features. In this figure the dashed line indicates the 2ωc
values while the dotted lines show the particle-hole tran-
sitions with ∆` = +1, which by angular-momentum selec-
tion rules are the only ones that couple to the high-energy
branch. All these transitions are of interband character.
The ∆` = −1 particle-hole transitions (of both intra- and
interband character) only contribute to the low-energy
branch and thus are not relevant for the present discus-
sion. From this figure and the results that will be pre-
sented below, the fragmentation of the FIR absorption,
causing the Bernstein modes, can be understood as an ef-
fect of the coupling with particle-hole transitions, allowed
by the non-parabolicity of the confining potential. Note
that at B ≈ 2 T there is a particle-hole excitation ac-
tually lying in between the fragmented Bernstein peaks,
thus showing that the maximal overlap of the interact-
ing response with the interband transitions occurs below
the 2ωc line. We stress that in spite of the overlap with
ω−(B), the displayed transitions do not couple with the
lower branch by angular momentum selection rules.

The relevance of the different particle-hole transitions
is more easily appreciated within the perturbative re-
sponse formalism, as opposed to the real-time one (see,
e.g., Ref. [18]). Using the perturbative method, in Fig-
ure 2 we compare the full absorption function atB = 1.8 T
with those obtained by including only the hole states from
the first and second Landau bands, respectively, shown
in the left panel. The interacting responses in the re-
stricted subspaces show collective peaks which approx-
imately reproduce the energies of the Bernstein excita-
tions in the full response. Therefore, each of the Bernstein
peaks can be thought of as arising from particle-hole ex-
citations of different bands, as it happens in the bulk

limit for a modulated 2D gas [19]. Note, however, that
the picture of separate FIR excitations for each band is
an approximate one, since there are important interfer-
ence effects between bands. With this interpretation we
expect that when ω+(B) and 2ωc(B) intersect in a region
where only one Landau band is occupied there will be no
Bernstein fragmentation as in Figure 1. Indeed we have
checked this by using a much lower value of the confine-
ment, ω0 = 0.5 meV, which for B = 0.3 T has one (spin
degenerate) occupied Landau band and ω+(B) ≈ 2ωc(B)
without any anticrossing.

The preceding analysis is in qualitative agreement
with the results for Raman modes in quantum wires
of Steinebach et al. [20]. These authors attribute the
anticrossing to the large importance of transitions
with ∆n = 2, where n is the Landau level index, with re-
spect to those with ∆n = 1. Realizing that ∆n = 1 transi-
tions are mainly from the highest occupied Landau band,
while ∆n = 2 also includes the second highest Landau
band, one arrives at a similar conclusion as the above one.

We consider next the current distributions. The pure
Kohn modes in parabolic dots correspond to rigid trans-
lations of the electronic density and, therefore, to essen-
tially uniform current distributions, the only variations
being due to the density inhomogeneities. A similar result
is found for the low energy branch in Figure 1, indicating
the Kohn-like character of this mode.

The current patterns at a given time for the Bernstein
modes in the nonparabolic dot are shown in Figure 3. The
time evolution for each of these patterns is simply an anti-
clockwise rotation, in agreement with the ∆` = +1 char-
acter of the mode (the positive z axis is pointing towards
the reader). The leftmost panel corresponds to the dom-
inant peak at B = 1.4 T, which displays a current pat-
tern basically uniform in the bulk of the dot, thus similar
to the previously mentioned Kohn modes. The two in-
termediate panels correspond to the peaks at B = 2 T
(at ω ≈ 0.52 and 0.54). They show an incipient separa-
tion of bulk and edge current oscillations which is fur-
ther developed at B = 2.4 T (two right panels). Note that
the edge-current patterns contain a hole in the dot cen-
ter. Therefore, the non-parabolicity of the potential in-
duces a separation in energy of the higher-branch bulk and
edge current modes, which are degenerate in the purely
parabolic case.

It is also interesting to look at the density varia-
tion patterns displayed in Figure 4 for the B = 2.4 T
case. As before, the time evolution of each pattern is a
clockwise rotation for the lower-energy branch and an-
ticlockwise for the upper modes. Plus and minus signs
indicate increment and decrement in the local density,
respectively. Note that both the low-energy peak (f1) and
the dominant peak of the higher branch (f2) exhibit a
simple dipole pattern with two lobes. On the contrary,
the highest mode (f3) displays an internal structure re-
flecting the existence of a node in the radial density and
four regions with alternate phases. The internal struc-
ture of f3 nicely correlates with the the current pat-
tern of Figure 3, since the regions of current convergence
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Fig. 3. Current density patterns for the high energy branch at different magnetic fields. Each label indicates the corresponding
mode in Figure 1. A different absolute scale, varying in proportion to the dipole strength of the corresponding peak of Figure 1,
has been used in each panel.
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Fig. 4. Pattern of local-density variations for the indicated modes of Figure 1 which correspond to the three dipole peaks at
B = 2.4 T. The gray color scale indicates the signal magnitude while the corresponding sign is superimposed in white.

Fig. 5. Local absorption patterns for the Bernstein peaks at different magnetic fields. Black regions correspond to high absorp-
tion, with an absolute scale proportional to the peak’s dipole strength.

(divergence) correspond to an increase (decrease) of the
local density.

A time average of the oscillating density amplitudes
highlights the regions of higher FIR absorption in the
dot, as shown in Figure 5. The different grey colours in-
dicate the absorption strength as given by the local oscil-
lation. We notice that at B = 1.4 T the Bernstein peaks

absorb basically in rings, with the lower peak having a
more internal character. As the magnetic field is raised
the lower peak tends to expand its absorption ring, while
the higher one absorbs more in the inner region. As a re-
sult, at B ≈ 2.6 T the two modes reverse their character,
the upper mode becoming more internal. Thus showing
that the two Bernstein peaks absorb energy in compleme-
mentary spatial regions.
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5 Conclusions

We have analysed the fragmentation of the high-energy
branch in non-parabolic dots by using a) a comparison
with the allowed electron-hole transitions, b) the current
and density variations associated with each peak, and c)
the local absorption pattern of each mode. We conclude
that the Bernstein fragmentation is a result of the coupling
with electron-hole dipole transitions originating from each
of the two occupied Landau bands. This coupling mani-
fests in an energy separation of the bulk and edge current
modes, with the latter one having a four-lobe structure in
the oscillating density. The separation of the modes is also
reflected in the local absorption, being more internal for
the lower peak than for the higher one at small B’s and
reverting character when the magnetic field is increased.

This work was supported by Grant No. PB98-0124 from DGE-
SeiC, Spain, the Research Fund of the University of Iceland,
and the Icelandic Natural Science Council.
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1998)

4. We use the effective-atomic-unit system in the context
of the effective-mass Hamiltonian. In terms of the the
semiconductor dielectric constant κ and electron effective
mass m we thus impose e2/κ = m = ~

2 = 1
5. V. Gudmundsson, A. Brataas, P. Grambow, B. Meurer, T.

Kurth, D. Heitmann, Phys. Rev. B 51, 17 744 (1995)
6. I.B. Bernstein, Phys. Rev. 109, 10 (1958)
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